考试大纲

2020考研数学三考试大纲(线代部分)考试内容和要求变化分析

来源:跨考2019-07-08

  2020考研大纲将于2019年7月8日上午正式发布!跨考教育小编第一时间发布2020考研大纲,教研老师也将第一时间为小伙伴带来考研大纲解读,希望各位考研的小伙伴及时关注,敬请期待!下面是2020、2019年考研数学三考试大纲(线性代数部分)考试内容和考试要求变化对比,以供参考!

章节 2020年考试数学大纲考试内容和考试要求 2019年考试数学大纲考试内容和考试要求 变化
一、行列式 考试内容
 
行列式的概念和基本性质 行列式按行(列)展开定理
 
考试要求
 
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
 
考试内容
 
行列式的概念和基本性质 行列式按行(列)展开定理
 
考试要求
 
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
 
对比
:无变化
二、矩阵 考试内容
 
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价  分块矩阵及其运算
 
考试要求
 
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
考试内容
 
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价  分块矩阵及其运算
 
考试要求
 
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
对比
:无变化
三、向量  
考试内容
 
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组  等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系  向量的内积  线性无关向量组的正交规范化方法
 
考试要求
 
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
 
考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组  等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系  向量的内积  线性无关向量组的正交规范化方法
 
考试要求
 
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
对比
:无变化
四、线性方程组 考试内容     
                                   
线性方程组的克拉默(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解  非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解
 
考试要求
 
1.会用克拉默法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
考试内容    
                                    
线性方程组的克拉默(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解  非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解
 
考试要求
 
1.会用克拉默法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
对比
:无变化
五、矩阵的特征值和特征向量  
考试内容
 
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
 
考试要求
 
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
 
考试内容
 
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
 
考试要求
 
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
对比
:无变化
六、二次型 考试内容
 
二次型及其矩阵表示  合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
 
考试要求
 
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
考试内容
 
二次型及其矩阵表示  合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
 
考试要求
 
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型、正定矩阵的概念,并掌握其判别法.
对比
:无变化
 

  (本文为跨考教育教研室高杨老师原创,转载请注明出处。)

展开全文
公共课>数学>考试大纲

近期热点

相关推荐

2009年考研政治数学大纲变化大

2012年考研《数学》大纲重难点解析

2012考研《数学》大纲综述:无变化

2012考研数学大纲解析:线性代数无变化

2012考研数学大纲解析:概率统计无变化

2012年考研数学大纲:考试难度预计略有提升

针对考研数学大纲教你利用历年真题高效学习

大家都在看

2020考研数学各科目中必知的解题思路

过来人给2020考研er的5大数学复习建议

2020考研数学复习六大误区要规避

2020考研数学拿高分 5大方面需强化训练

2020考研:8月份考研数学复习计划

【暑期备考】如何高效利用晚上时间进行备考?

2020考研成功者应具备的八大要素

跨考分校

加盟