复习指导

2020考研大纲提早发布 对于数学的有什么影响?

来源:跨考2019-07-04

跨考教育

  最近大纲提前发布的消息已经遍布各大网站,这关系着每一位考生的复习范围,以及志愿的报考,那么有一个问题很多同学就开始担心了,今天这么早发布大纲,难道是会有什么学科范围发生很大的变化,不会是数学吧?这个问题我也在思考,但直觉告诉应该不会,还是好好放心的按部就班的复习就好了,就算有,也应该是个别考点发生些变化,不会是面积的。那么先回顾一下去年的考试大纲范围吧!

  微积分

  一、函数、极限、连续

  考试内容

  函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

  数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

  函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

  二、一元函数微分学

  考试内容

  导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系  平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的微分法 高阶导数  一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值

  三、一元函数积分学

  考试内容

  原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用

  四、多元函数微积分学

  考试内容

  多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单的反常二重积分

  五、无穷级数

  考试内容

  常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式

  六、常微分方程与差分方程

  考试内容

  常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用

  线性代数

  一、行列式

  考试内容

  行列式的概念和基本性质 行列式按行(列)展开定理

  二、矩阵

  考试内容

  矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算

  三、向量

  考试内容

  向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法

  四、线性方程组

  考试内容

  线性方程组的克拉默(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系 非齐次线性方程组的通解

  五、矩阵的特征值和特征向量

  考试内容

  矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵

  六、二次型

  考试内容

  二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性

  概率论与数理统计

  一、随机事件和概率

  考试内容

  随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验

  二、随机变量及其分布

  考试内容

  随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布

  三、多维随机变量的分布

  考试内容

  多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量简单函数的分布

  四、随机变量的数字特征

  考试内容

  随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质

  五、大数定律和中心极限定理

  考试内容

  切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列维—林德伯格(Levy-Lindberg)定理

  六、数理统计的基本概念

  考试内容

  总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 x²分布 t分布 F分布 分位数 正态总体的常用抽样分布

  七、参数估计

  考试内容

  点估计的概念 估计量和估计值 矩估计法 最大似然估计法

  (本文为跨考教育教研室佟庆英老师原创,转载请注明出处。)

展开全文
公共课>数学>复习指导

近期热点

相关推荐

2015年考研数学暑期备考经验

2015年考研数学暑期备考经验

2014年考研数学复习成功经验整理

2015年考研数学七大备考误区分析

文科生备考2015考研数学有妙招

2015考研数学复习初期不宜用题海战术

2015考研数学复习:寻根问底之秩篇(一)

大家都在看

2021考研数学高数基础篇之:导数与微分

2020考研英语《经济学人》常用词汇(10)

2020考研英语《经济学人》常用词汇(9)

2020考研英语《经济学人》常用词汇(8)

2020考研英语《经济学人》常用词汇(7)

2020考研英语《经济学人》常用词汇(6)

2020考研英语阅读不会搞?实用技巧来一套

跨考分校

加盟