X
跨考考研 搜一搜
跨考考研
跨考考研
跨考考研
跨考考研
2014考研数学复习:建议天天模拟_跨考网
跨考考研2013-05-28
来源跨考网整理
跨考考研

  对于考研数学的复习,跨考教育辅导专家建议,数学要天天看、天天练,长流水、不断线。因为数学一旦放下来就生疏了,对一些基础性的运算要非常熟练,任何解题方法和技巧都建立在对内容熟悉的基础上,只有熟悉基本理论,解题技巧才有发挥的余地。

  清华大学数学科学院教授刘坤林老师说,如果考生对基本概念进行过思考并理解到位,那么考生分析和解决问题的思路就会非常清晰。考生解题的能力和技巧全部来源于对基本概念的理解和把握。

  等式与不等式的证明是微积分部分中的难题,但事实上,考生如果对一些基本概念透彻理解的话,这些所谓难题就会变得相对容易。这个问题相关知识点包括:连续函数的零点定理、介质定理,最大、最小定理以及微分中值定理。由连续函数的零点定理进一步推导出介质定理,所用方法是“移项造辅助函数”,这是处理等式与不等式证明的基本切入点。

  拉格朗日微分中值定理的一个基本推论是一个函数在闭区间上的导数恒大于零,则这个函数在这个闭区间单调增加,于是,可以断言,如果此函数在闭区间起点的函数值为零,则在闭区间内此函数恒小于零。正是这样一个概念的理解,为我们提供了等式与不等式证明的又一个基本切入点技巧。这个技巧可以称之为: “初值(或终值)加增减性分析方法”。

  以上两个基本切入点或技巧构成了分析等式与不等式证明的重要方法,而这两个方法来自于对概念的理解和思考。另外,上述所谈闭区间可以改成开区间,而此时,两端点的函数值可能没有定义,这时只要考查两个端点的单侧极限是否有一个为零,并且两个端点都可以广义地变为正无穷(或负无穷),此时,只要考虑趋于正无穷(或负无穷)的极限即可。

  如考生对于数学中每个学科的复习,都能做到如上例子中讲到的思考过程,复习效率就会大大提高。

  跨考教育预祝考研的学子们考研顺利,早日收到理想院校的offer!

查看更多

  2022考研初复试已经接近尾声,考研学子全面进入2023届备考,跨考为23考研的考生准备了10大课包全程准备、全年复习备考计划、目标院校专业辅导、全真复试模拟练习和全程针对性指导;2023考研的小伙伴针也已经开始择校和复习了,跨考考研畅学5.0版本全新升级,无论你在校在家都可以更自如的完成你的考研复习,暑假集训营带来了院校专业初步选择,明确方向;考研备考全年规划,核心知识点入门;个性化制定备考方案,助你赢在起跑线,早出发一点离成功就更近一点!

点击右侧咨询或直接前往了解更多

考研院校专业选择和考研复习计划
2023备考学习 2023线上线下随时学习 34所自划线院校考研复试分数线汇总
2022考研复试最全信息整理 全国各招生院校考研复试分数线汇总
2023全日制封闭训练 全国各招生院校考研调剂信息汇总
2023考研先知 考研考试科目有哪些? 如何正确看待考研分数线?
不同院校相同专业如何选择更适合自己的 从就业说考研如何择专业?
手把手教你如何选专业? 高校研究生教育各学科门类排行榜

当前位置: 首页> 公共课> 数学> 复习指导> 正文
复习指导相关栏目
跨考考研
考研热点
推荐阅读
推荐课程
跨考考研
2022全年魔鬼集训营二期
跨考考研开班时间:2021.4.20
在线咨询跨考考研
跨考考研
2022大三抢先学
跨考考研开班时间:每月20日
在线咨询跨考考研
Copyright©2008-2020 北京尚学硕博教育咨询有限公司
公司地址:北京市西城区宣武门庄胜广场中央办公楼南翼19层
客服电话:400-833-2220
跨考考研