X
跨考考研 搜一搜
跨考考研
跨考考研
跨考考研
跨考考研
2021考研数学大纲高数必备定理:中值定理与导数的应用
跨考考研2020-05-20
来源跨考网整理
跨考考研

  考研大纲是考研复习的指向标,虽然2021考研数学大纲还未发布,但是大家可以按照旧大纲进行复习。高等数学是考研数学内容最多的一部分,要想拿分,须把一些定理记牢。因此针对2021考研高等数学复习,小编整理了2021考研数学备考高数必备定理,供大家参考。

  中值定理与导数的应用

  1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a

  2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a

  3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。

  4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式。

  5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)

  如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

  6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。

  在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。

  定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f’(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f’(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f’(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。

  定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f’(x0)=0,f’’(x0)≠0那么:(1)当f’’(x0)0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

  7、函数的凹凸性及其判定设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2][f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。

  定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f’’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f’’(x)

  判断曲线拐点(凹凸分界点)的步骤(1)求出f’’(x);(2)令f’’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f’’(x)在x0左右两侧邻近的符号,如果f’’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。

查看更多

  2022考研征程已开启,了解竞争压力,盘点历年考研人数,请前往→近10年考研人数汇总;这个五一,开启自我评估,了解不同阶级院校怎么选,了解同专业不同院校研究方向与个人发展匹配度...尽在跨考考研五一体验营专为你而来!

        若此战失利,与理想院校失之交臂,没关系!你一样可以支棱起来!二战集训营,我们等你,挽救2021的失误,这次,我们和你一起再战考研!

点击右侧咨询或直接前往了解更多

2022考研全年集训
2022考研形式分析 各专业院校排名情况 从历年会计专硕报录比说MPAcc考研难吗
2022考研时间及注意事项 全年复习方案制定
从金融专硕报录比解读金专考研哪些院校最好考 考研难度分析及自身情况解读
2022备考全面解读 考研考试科目有哪些? 如何正确看待考研分数线?
不同院校相同专业如何选择更适合自己的 从就业说考研如何择专业?
手把手教你如何选专业? 高校研究生教育各学科门类排行榜

当前位置: 首页> 公共课> 数学> 高等数学> 正文
高等数学相关栏目
跨考考研
考研热点
推荐阅读
推荐课程
跨考考研
2022全年魔鬼集训营二期
跨考考研开班时间:2021.4.20
在线咨询跨考考研
跨考考研
2022大三抢先学
跨考考研开班时间:每月20日
在线咨询跨考考研
Copyright©2008-2020 北京尚学硕博教育咨询有限公司
公司地址:北京市西城区宣武门庄胜广场中央办公楼南翼19层
客服电话:400-833-2220
跨考考研