X
跨考考研 搜一搜
跨考考研
跨考考研
跨考考研
跨考考研
2022考研数学高数:导数的五个重点解析!
跨考考研2021-03-24
来源跨考网整理
跨考考研

  2022考研的考生们已经开始了第一轮复习备考计划,数学作为考研中能够拉开大分差的科目,有多少考研er是因为数学与自己心仪的院校失之交臂?建议考研数学基础不好的小伙伴早点开始复习,下面小编整理了2022年考研高数导数的五个重点,一起来看看吧。

  第一,理解并牢记导数定义。导数定义是考研数学的出题点,大部分以选择题的形式出题,01年数一考一道选题,考查在一点处可导的充要条件,这个并不会直接教材上的导数充要条件,他是变换形式后的,这就需要同学们真正理解导数的定义,要记住几个关键点:

  1)在某点的领域范围内。

  2)趋近于这一点时极限存在,极限存在就要保证左右极限都存在,这一点至关重要,也是01年数一考查的点,我们要从四个选项中找出表示左导数和右导数都存在且相等的选项。

  3)导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导,请同学们记清楚了。

  4)掌握导数定义的不同书写形式。

  第二,导数定义相关计算。这里有几种题型:1)已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的。

  第三,导数、可微与连续的关系。函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的,相信这一点大家都很清楚,而我要提醒大家的是可导推连续的逆否命题:函数在一点处不连续,则在一点处不可导。这也常常应用在做题中。

  第四,导数的计算。导数的计算可以说在每一年的考研数学中都会涉及到,而且形式不一,考查的方法也不同。

  要能很好的掌握不同类型题,首先就需要我们把基本的导数计算弄明白:

  1)基本的求导公式。指数函数、对数函数、幂函数、三角函数和反三角函数这些基本的初等函数导数都是需要记住的,这也告诉我们在对函数变形到什么形式的时候就可以直接代公式,也为后面学习不定积分和定积分打基础。

  2)求导法则。求导法则这里无非是四则运算,复合函数求导和反函数求导,要求四则运算记住求导公式;复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则,我们可求出很多函数的导数;反函数求导法则为我们开辟了一条新路,建立函数与其反函数之间的导数关系,从而也使我们得到反三角函数求导公式,这些公式都将要列为基本导数公式,也要很好的理解并掌握反函数的求导思路,在13年数二的考试中相应的考过,请同学们注意。

  3)常见考试类型的求导。通常在考研中出现四种类型:幂指函数、隐函数、参数方程和抽象函数。这四种类型的求导方法要熟悉,并且可以解决他们之间的综合题,有时候也会与变现积分求导结合,94年,96年,08年和10年都查了参数方程和变现积分综合的题目。

  第五,高阶导数计算。高阶导数的计算在历年考试出现过,比如03年,07年,10年,都以填空题考查的,00年是一道解答题。需要同学们记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。这里还有一种题型就是结合莱布尼茨公式求高阶导数的,00年出的题目就是考察的这两个知识点。

  (注:本文来自网络,如有侵权,请联系删除)

查看更多

  2022考研征程已开启,了解竞争压力,盘点历年考研人数,请前往→近10年考研人数汇总;五月的进度条蹭蹭前行,你的院校选好了吗?复习方案做好了吗?没有?跨考半年集训营让老师带你一起剖析自我,科学择校,以目标为导向合理化制定复习方案!

点击右侧咨询或直接前往了解更多

2022考研全年集训
2022考研形式分析 各专业院校排名情况 从历年会计专硕报录比说MPAcc考研难吗
2022考研时间及注意事项 全年复习方案制定
从金融专硕报录比解读金专考研哪些院校最好考 考研难度分析及自身情况解读
2022备考全面解读 考研考试科目有哪些? 如何正确看待考研分数线?
不同院校相同专业如何选择更适合自己的 从就业说考研如何择专业?
手把手教你如何选专业? 高校研究生教育各学科门类排行榜

当前位置: 首页> 公共课> 数学> 高等数学> 正文
高等数学相关栏目
跨考考研
考研热点
推荐阅读
推荐课程
跨考考研
2022全年魔鬼集训营二期
跨考考研开班时间:2021.4.20
在线咨询跨考考研
跨考考研
2022大三抢先学
跨考考研开班时间:每月20日
在线咨询跨考考研
Copyright©2008-2020 北京尚学硕博教育咨询有限公司
公司地址:北京市西城区宣武门庄胜广场中央办公楼南翼19层
客服电话:400-833-2220
跨考考研